Simulations and Antichains for Efficient Handling of Finite Automata

نویسنده

  • Lukás Holík
چکیده

This thesis is focused on techniques for finite automata and their use in practice, with the main emphasis on nondeterministic tree automata. This concerns namely techniques for size reduction and language inclusion testing, which are two problems that are crucial for many applications of tree automata. For size reduction of tree automata, we adapt the simulation quotient technique that is well established for finite word automata. We give efficient algorithms for computing tree automata simulations and we also introduce a new type of relation that arises from a combination of tree automata downward and upward simulation and that is very well suited for quotienting. The combination principle is relevant also for word automata. We then generalise the so called antichain universality and language inclusion checking technique developed originally for finite word automata for tree automata. Subsequently, we improve the antichain technique for both word and tree automata by combining it with the simulationbased inclusion checking techniques, significantly improving efficiency of the antichain method. We then show how the developed reduction and inclusion checking methods improve the method of abstract regular tree model checking, the method that was the original motivation for starting the work on tree automata. Both the reduction and the language inclusion methods are based on relatively simple and general principles that can be further extended for other types of automata and related formalisms. An example is our adaptation of the reduction methods for alternating Büchi automata, which results in an efficient alternating automata size reduction technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antichains: Alternative Algorithms for LTL Satisfiability and Model-Checking

The linear temporal logic (LTL) was introduced by Pnueli as a logic to express properties over the computations of reactive systems. Since this seminal work, there have been a large number of papers that have studied deductive systems and algorithmic methods to reason about the correctness of reactive programs with regard to LTL properties. In this paper, we propose new efficient algorithms for...

متن کامل

VATA: A Library for Efficient Manipulation of Non-deterministic Tree Automata

In this paper, we present VATA, a versatile and efficient open-source tree automata library applicable, e.g., in formal verification. The library supports both explicit and semi-symbolic encoding of non-deterministic finite tree automata and provides efficient implementation of standard operations on both. The semi-symbolic encoding is intended for tree automata with large alphabets. For storin...

متن کامل

Efficient Algorithms for Handling Nondeterministic Automata

Finite (word, tree, or omega) automata play an important role in different areas of computer science, including, for instance, formal verification. Often, deterministic automata are used for which traditional algorithms for important operations such as minimisation and inclusion checking are available. However, the use of deterministic automata implies a need to determinise nondeterministic aut...

متن کامل

Novel efficient fault-tolerant full-adder for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...

متن کامل

Novel efficient fault-tolerant full-adder for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1706.03208  شماره 

صفحات  -

تاریخ انتشار 2017